NAIC-ID(RS)T-0023-95

NATIONAL AIR INTELLIGENCE CENTER

C FUNCTION RECOGNITION TECHNIQUE AND ITS IMPLEMENTATION
IN 8086 C DECOMPILING SYSTEMS

by

Chen Fuan, Liu Zongtian

DTIC
ELECTE R

JUN 1 2 1955 &

F:

Approved for public release:
distribution unlimited

DTIC QUALITY INSPECTED &

4

NAIC-ID(RS)T-0023-95

HUMAN TRANSLATION
NAIC-ID(RS)T-0023-95 26 May 1995

MICROFICHE NR:QAS €O 00332 Y
C FUNCTION RECOGNITION TECHNIQUE AND ITS IMPLEMENTATION

IN 8086 C DECOMPILING SYSTEMS
By: Chen Fuan, Liu Zongtian

English pages: 20

Source: Xiaoxing Weixing Jisaunji, Vol. 12, Nr. 11,

1991; pp. 33-40; 47

Country of origin: China
Translated by: SCITRAN

F33657-84-D-0165

Requester: NAIC/TATA/Keith D.

Approved for public release:

Anthony

distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL
FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITO-
RIAL COMMENT STATEMENTS OR THEORIES ADVO-
CATED OR IMPLIED ARE THOSE OF THE SOURCE AND
DO NOT NECESSARILY REFLECT THE POSITION OR
OPINION OF THE NATIONAL AIR INTELLIGENCE CENTER.

PREPARED BY:

TRANSLATION SERVICES
NATIONAL AIR INTELLIGENCE CENTER
WPAFB, OHIO

NAIC- ID(RS)T-0023-95 Date

26 May 1995

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this
translation were extracted from the best quality copy available.

)
Accesion For] ‘
NTIS CRAZI N
DTIC TiB |
Unannounced o
Justificationn.
By

PO UUPURSTOTERRRI.

Distribution |

~

Availability Cones

. Avail andjor i
Dist Special
HA

C FUNCTION RECOGNITION TECHNIQUE AND ITS IMPLEMENTATION
IN 8086 C DECOMPILING SYSTEMS

Chen Fuan Liu Zongtian

ABSTRACT

In 8086 C decompilation systems, we take pattern
recognition principles and apply them to C function recognition.
This article, first of all, analyzes C function component
characteristics in object code. Following that, it introduces
library function pattern recognition techniques in 8086 C
decompilation systems, that is, C function recognition
characteristic extraction, recognition pattern matching methods,
and the establishment of library function characteristic code
recognition tables. Finally, it introduces implementation
methods associated with the library function recognition
techniques in question in 8086 C decompilation systems.

I. INTRODUCTION

Decompilation system functions are to take machine language
object code programs and transform them into functionally
equivalent high level language programs, causing programs to be
convenient to read, understand, modify, and protect.
Decompilation acts as a type of tool for software analysis and
understanding. It is a key component part associated with
software reverse work processes. It possesses important
practical value.

We developed 68000 C decompilation systems on Dual-68000
micro machines [1]. The systems in question are capable of
taking C compilation formed 68000 object code programs
(containing symbol information such as overall variable names as
well as library function names, and so on) and transforming them
into C language programs. However, the majority of object code
programs in actual use are ones which do not contain any symbol
information. In order to increase the practicality of
decompilation techniques, on PC machines, we developed C language
decompilation systems aimed at 8086 object code programs not /34
carrying any symbol information and formed by C compilation (this

jtem is a subtask of national item 7-5, serial no. 68-4-3/01).
As a result, there exist symbol restoration problems associated
with variable names and library function names. On the
foundation of component analysis carried out on object code
programs formed by C compilation on PC machines, the symbol
restoration plan we opted for the use of is: during
decompilation processes associated with object code programs,
apply pattern recognition principles to carry out C function
recognition, thereby restoring library function symbol names
utilized in programs, form compilation language programs having
library function names, and, as far as restored variable names
and data types are concerned, put them back into outcome symbol

tables to construct phases of execution.

II. C FUNCTION COMPONENT ANALYSIS IN OBJECT CODE PROGRAMS

In order to recognize library functions in object code
programs, first of all, one should understand the structural
forms associated with object code program code composition,
understand the forms of utilization associated with library
functions in object code programs, and analyze code composition
characteristics associated with library functions.

1. Structural Forms Associated with Object Code Program
Code Composition

Oon IBM PC/AT micro machines, we dissected and analyzed
object code programs formed by compilation with small memory
patterns from Microsoft C(Ver.5.0) [3]. The code composition
structural forms are:

(1) From offset address 10H to offset addresses associated
with the beginning of program execution, one reduced storage unit
is the machine code storage area associated with main function as
well as user definition functions in C original programs--we

designate it as program code area (see as shown in Fig.l).

—main:
{
48AF:0010 55 .~- PUSH.
48AF:0011 "8BEC MOV

s 48AF:0013 ,33C0 - .1 XOR .
48AF:0015 ~ E88602 CALL
L48AF:0018 - E81C00 - . CALL'
“48AF:001B ' 'FF364200 PUSH
. 48AF:001F , B87402, ;.. MOV .
" 48AF:0022 " 50° ' PUSH
.- 48AF:0023 - E8C005..¢+ + CALL ..
43 AF:0026 ~“83C404 ADD
48AF:0029-- B80500 - MOV .
48AF:002C 350 PUSH
48AF:002D " E87011 CALL
_48AF:0030 83C402 ADD
48AF:0033-= 8BES MOV..
48AF:0035" 5D POP
4}$8AF 10036 .C3 - _RET
_J'uncllon S ~: s
G .
48AF:0037. . ‘55 i .. "PUSH.
-48AF:0038 MOV
48AF:003A - 33co XOR
48AF:003C E85F02 CALL
48AF:003F B87802 MOV
48AF:0042 50 PUSH
48AF:0043 FF364200 PUSH
48AF:0047 EBAS8IS CALL
4S3AF:004A 83C404 ADD
48AF:004D i A38007 A MOV
",A8AF:0050;- 8BES ._;.}-;(;MOV,;‘:;A
"48AF:0052 . 5D, . POP
| 48AF:0053" C3° f 11 i RET s
D .

(a) Program Code Area Corresponding
to Original Program
Fig.l1 Program Code Area Example

(2)

BP
BP, SP

. AX,AX

chkstk (029E)
__function (0037)
Word Pur [0042])

. AX, 0274 .
b AX :
._prmlf (0SES)

SP, +04

AX 0005 -

AX

__close (11A0)

P.+02
SP,BP .

BP

chkslk (029E)
AX,0278

AX
Word Ptr{0042}
5P __stremp (15F2) -

SP,BP .7 :F

BP

et anNe <

04
Word Pir [07301 AX

(b)

') NS

-'funcuon() R

"Hinclude <stdioh>
Finclude <io.h>

t

int x;
char » stre smng’

main()
function(); '
- prinif{"%s’ su0);
* close(S);

~}' x = stremp(str, xlnng'),

Original Program
Example

Memory elements from program execution start addresses

to the approximately 150 character segments which follow are

machine code storage areas associated with common operations

formed in C compilation--we designate them as main control code

areas.

programs,

(3)

all are stored and function the same.

The code zones in question, in various object code

/35

Following main control code areas--to the conclusion of

program code sections--are subprogram machine code storage areas

associated with library functions or systems utilized during

program execution.

code areas.

We designate all of these as library function

Structural forms associated with object code program code
composition are as shown in Fig.2.

On the basis of the structural characteristics associated
with object code program code composition--comparing it to C
language program composition--in 8086 C decompilation systems, we
only need to take program code areas which are decompiled into
compilation language programs which correspond to main functions
and user defined functions, and, in conjunction with this, go
through main control code areas and find main function start
offset addresses as well as utilizing library function code areas

in order to recognize library functions utilized in programs.

s w0,
CS: 0010H : mﬂfﬁﬂﬂfx ‘{D o
CS: swuarnt . I \39
CS: start+95H * L . _:\ ﬁ
2 ___] &
IR -3 Y
W
X
R
o

Fig.2 Structural Forms Associated with Object Code Program Code
Composition

Key: (1) Program Code Area (2) Main Control Code Area
(3) Library Function Code Area

2. Composition Forms Associated with C Library Functions in
Object Code Programs

Through analysis of object code programs formed by C
compilation, it is discovered that C library function utilization
forms in object code programs as well as code composition

characteristics are:

1) C library functions (excluding macro definition
functions) all use subprogram forms to appear in object code
programs. Library functions used in user programs all have
subprogram code sections associated with corresponding functions
in object code programs after going through compilation. 1In the
same program, the same library function is used in multiple
locations. However, corresponding library function code sections
in object code programs, only appear once. The majority of
subprograms corresponding to library functions are associated

with insertion into sets and transfers.

2) C library function code is not influenced by compilation
optimization. Moreover, library function code in the same
program is not influenced by input parameters using different
forms. However, in different programs, the same library function
is used. Due to changes associated with variable parameter
distribution addresses as well as transferred subprogram assembly
addresses during compilation and linking assembly, it will lead
to command codes to these addresses associated with certain uses
in library function code to also produce variations. However,
this is only command operation numbers producing changes. By
contrast, operation code will not change. Therefore, command
operation code sequences in library function code will not, under

any circumstances, produce variations (see Fig.3 example).

(3) Subprograms corresponding to C library functions used

in programs have transfer input addresses which, in all cases,

5

appear in program code areas. They appear in the form of CALL

Subroutine __ address commands. In this way, we are capable, with
regard to program code area decompilation processes, of searching
out various individual library function input addresses utilized

for library function recognition uses (see Fig.l example).

Starting out from the angle of library function recognition,
we use the two standards of storage forms associated with library
function code (main subprogram portion) in object programs and
whether or not operation numbers in library function code contain
variations. It is possible to take composition forms associated
with C library function code and divide them into the three basic

types below:

Continuous Not Deformed--This type of library function code
is continuously stored in object code programs. Code does not
contain such commands as use variable parameter addresses,
subprogram transfers, or absolute transfers. As a result, no
matter in what type of situation utilization is, library function
code, in all cases, will not produce variations--for example,

strcmp function code as shown in Fig.3(a).

Continuous Deformable--This type of library function code in
object code programs is continuously stored. However, within
code, there are contained certain commands such as utilization
variable parameter addresses, subprogram transfers, and so on.

As a result, following along with changes in variable
distribution addresses as well as assembly addresses for
transferred subprograms, operation number code corresponding to
these commands will also produce variations--for example, code

associated with printf function main subprogram sections as shown

in 3(b).

Sectioned Deformable--This type of library function code is

divided into certain sections and stored. The various sections

6

are put through transfer type functions for the sake of
continuous execution. Basically, the code associated with the
various sections belongs to a deformable type--for example, the

code associated with close function main subprogram sections as

shown in Fig.3(c). /36
__sgremp:

43AF:15F2 55 PUSH BP

* 48AF:15F3_ 8BEC.: -, MOV.- . BPSP

.. 48AF:15F5" ssm'r‘ .MOV - 'DX,DI

‘48AF:15F7 8BDE : MOV BX;SI.

_ 48AF:15F9 8CD§ ..: MOV AX,DS

- 48AF:15FB "8ECO = ~ " MoV . ES,AX

. 48AF'ISFD 8B7604 = MOV © - SLWord Pir (BP+04]
"48AF:1600 8BTE06 ~° MOV’ DIWord Pir [BP+06]

. -48AF:1603 33C0~" " 7 XOR- '~ AX,AX
‘< 48AF:1605 BYFFFF ~ MOV CX,FFFF
43AF:1608 “F2AE - REPNE- SCASBH . —tlosc:. o . -
48AF:160A FID1 ~NOT 'CX =~ " 48AF:11A0 55 ~ - /' 'PUSH ' “BP’ -
48AF:160C 2BF9. ... SUB. DICX , - . " 48AF:11A1 8BEC .~ MOV, . .BPSP
48AF:160E F3A6 .. REPZ CMPSB 4SAF-11A3 8BSEO4 - MOV~ BXWord Pir [BP+04]
43AF:1610 7405 ° Jz _stremp+25 (1617) 48AF:11A6 3BIEC200 CMP- .. BX,Word Pir [00C2]
48AF:1612 1BCO SBB AX,AX 48AF:11AA 7206 . B _closc+12
48AF:1614 IDFFFF SBB: AX,FFFF 48AF:11AC B3000Y MOV AX,0900 .
48AF:1617 8BF3 MOV SI,BX 48AF:11AF F9 STC :
48AF:1619 8BFA MOV DI,DX 43AF:1180 EBOB JMP _closetld (11BD)
43AF:161B SD POP BP 48AF:11B2 B43E MOV AHJ3E =~
48AF:161C C3. RET . -43AF:11B4 CD21 INT, 21 . . .
: : . , 48AF:11B6 7205 JB 7 < close+ld (11BD)
43AF:11B8 C687C40000 MOV | Byte Ptr [BX+00C4},00
(a)__sgrcmp code 48AF:11BD ESAOF3 JMP ' _dosrct0 = (0560)
«_printf: SRS CHRRRA SR PR
48AF:05E6 55 . PUSH BP _ . .
43AF-05E7- 8BEC:' . MOV- BPSP T . _dosret0: . .. - S . :
. 48AF:0SES 83ECO8 ~ SUB - SP+08 43AF:0560 7213)] dosrclax+2 (0575)
48AF:05EC 57. . PUSH - DI 43AF:0562 33C0 XOR - AXAX - -
483AF:.05ED 56 PUSH. SI : 43AF:0564 B8BES MOV SP,BP .
48AF.05EE BEI1001 MOV SL,0110 43AF:0566 SD POP BP .
ASAF:05F1 8D4606 LEA AX,Word Ptr[BP+061 48AF:0567 C3 RET .
WSAF.05F4 8946FC MOV Word Pur[BP—04],AX
43AF:05F7 56 PUSH SI
48AF:05F8 ESBDOL CALL . 'S—;%'zf ©7B3) dosrelax+2:
AT OIEE §BFs. MOV DIA * 48AF:0575 EB0EQ0 CALL .. _maperrortS . (0586)
48AF-0600 8D4606 LEA AX Word Ptr [BP+06} 48AF:0578 BIFFFF MOV ‘AX,FFFF'
48AF:0603.°50 © ... PUSH ,AX 48AF:057B 99 . CWD
_48AF.0604 FF7604 PUSH ' Word Pir[BP+04] (4BAF0SIC 8BES. . MOV SPBP
43AF:0607 . 56 . } PUSH -, SI A -48AF:087E .SD . .° POP: BP . ST
4AF:0608 E35103 CALL ~ outpul (095€) . 48AF057F C3 2
43AF:060B 83C406 ADD .. SP . .
48AF:060E 8946F8 MOV ' Word Ptr [BP—08]AX (Ck))____close main
48AF:0611 56) PUSH SI su rogram se i
48AF:0612 57 " PUSH :" DI codg g ction

48AF:0613; E85002 ~ CALL _fibul (0866)
48AF:0616 83C404 ADD SP,+04
48AF:0619 8B46F8 - . MOV AX Word Ptr [BP—08)

43AF:061C 5B POP SI
48AF.061D SF , POP DI
48AF:061E 8BES ‘MOV SP.,BP
48AF0620 SD . . ., POP BP
48AF:0621 C3 RET

(b) printf main subprogram section code
Fig.3 C Library Function Code Composition Form Examples

Key: (1) Note: 1In the Fig., underlined sections represent
operation numbers which can vary.

Taking C library codes and dividing them into these three
classes of composition type is advantageous to the recovery of
library function recognition characteristics and the
establishment of pattern matching forms.

III. C LIBRARY FUNCTION PATTERN RECOGNITION TECHNIQUES

1. Recovery of C Library Function Recognition
Characteristics

Through analysis, we take command operation code sequences
to act as C library function recognition characteristics. This

is because:

(1) No matter what composition type C library function
codes are or under what conditions they are utilized, their
command operation codes will not vary. Only certain command

operation numbers are capable of producing changes;

(2) Different library functions--due to differences in
their functions--are composed of different command operation code

sequences;

(3) On the basis of 8086 command coding rules, in coding
where command operation codes contain operation number types and
addressing forms, in this way, operation number codes are
eliminated from certain command codes. However, the total
characteristics of operation number codes certainly have not yet

disappeared.

In the recovery of C library function recognition
characteristics, the method we opt for the use of is: wunder the
principles of characteristic sufficiency, library function code
primary and supplementary characteristics are both taken, that
is, recovering primary characteristic codes from main subprogram

bodies and also recovering supplementary characteristic codes

8

from the transfer function subprograms (if there are any). This

is because: /37

1) there are a number of main subprogram sections associated
with library functions which certainly do not reflect the
functions realized, moreover, certain subprograms which they

transfer still represent the functions of library functions;

2) there are a number of code sections which correspond to
library functions which are very long; so long as there is a
situation which avoids the inclusion of recovered characteristics
code associated with different library functions, there is no
need to take the whole code to act as characteristic recovery.
This will increase the speed of library function pattern

recognition.

In accordance with characteristic recovery methods
associated with library function recognition discussed above, C
library function code tables were established. For example, with
regard to strcmp functions, we selected the complete command code
to act as the recognition characteristic code. Moreover, with
regard to printf functions, we took the main subprogram code and
eliminated four changed operation number codes to act as the main
characteristic recognition code. However, we selected the
transferred subprogram code to act as supplementary characteristic
recognition code. With regard to close functions, by contrast,
we selected the various code sections composing main subprogram
bodies and eliminated changed operation number codes to act as
the recognition characteristic code (see Fig.3). On the basis of
whether library function code recovery is complete or not,
characteristic codes can be divided into complete types--taking
whole code to act as characteristic code, as well as compressed
types--under the principles of characteristic sufficiency, taking
sections of code to make up characteristic code. With regard to

the three library function characteristic codes which are cited

9

as examples above, they all belong to the complete type. With
regard to code sections which are too long and most supplementary

characteristics, uniformly, they are handled like compression

types.

2. Pattern Matching Methods Associated with C Library

Function Recognition

On the basis of C library function code composition types
and characteristic code recovery methods, we opt for the use of
static matching and dynamic matching methods, respectively
designing eight types of C library function code recognition
pattern matching methods. Among them, there are four types
associated with the handling of complete characteristic codes:

Complete Matching Methods--Opting for the use of static
matching methods, library function characteristic codes
indicating length and library function codes awaiting recognition
in programs are taken to carry out equal length matching. This
type of matching method is appropriate to handling continuous
nondeformable types of library function recognition. It also
fits recognition of library functions of continuous deformable
types not containing supplementary characteristic codes. The
reason is that, among characteristic codes selected by this type
of library function, altered control number code is already not
contained. We opted for the use of code section complete
matching methods in order to carry out recognition of this type

of library function.

Subprogram Matching Methods--On library function
characteristic code and library function number code which waits
to be recognized--after carrying out subprogram transfer code
investigations--through dynamic execution of subprogram transfer
commands in programs in order to precisely specify the subprogram

entry address, one subsequently takes the entry addresses in

10

question and compresses them into queues. At the same time, one
also takes supplementary characteristic matching pattern
addresses (installed in advance) and compresses them into queues.

After waiting on main characteristic pattern matching,
supplementary characteristic pattern matching is then carried
out. This type of matching method is used in supplementary
characteristic pattern processing in continuous deformable type

library function recognition.

Direct Section Transfer Matching Methods--After carrying out
subprogram transfer code inspections in library function
characteristic codes and library function codes awaiting
recognition, dynamic execution of transfer commands in programs
is gone through in order to get start addresses for follow on
code sections. At the same time, preinstalled follow on section
matching pattern addresses are also picked up. They are
respectively taken to function as the next library function code
start address awaiting recognition and utilized in pattern
matching as well as library function matching pattern addresses.
This type of matching method is used in the handling of transfer
situations between main body code sections during recognition of

sectioned deformable type library functions.

Branching Section Transfer Matching Methods--This type of
method is used in the handling of branching code section transfer
situations during sectioned deformable library function
recognition. It obtains code start addresses for library
functions awaiting recognition and library function matching
pattern addresses. In method, it is the same as direct section
transfer matching forms. What is different is that, in the forms
in question, one takes these two addresses and compresses them
into queues, waits until after main body code section pattern
recognition and then carries out branching section processing.

11

With regard to the four types of complete form pattern
matching methods, their common points are that amounts of offset
associated with characteristic code addresses stored in
characteristic code tables and amounts of offset between library
function code awaiting recognition and start entry addresses are
equal. The four types of pattern matching methods associated
with the processing of compressed form characteristic codes are:
compressed type complete matching forms; compressed type
subprogram matching forms; compressed type direct section
transfer matching forms; and, compression type branching section

transfer matching forms.

These four types of matching forms, in terms of processing
methods and processing objects, are the same as the corresponding
complete type matching forms. What is different is that the
amounts of offset associated with their characteristic code
addresses stored in characteristic code tables and the amounts of
offset associated with library function code waiting to be

recognized and start entry addresses are not equal.

We utilize the pattern matching forms described above and
set up pattern matching form tables associated with the
recognition of various individual C library function
characteristic codes. The majority of library function
recognition pattern matching form tables are composed of several
types of matching forms. For example, strcmp functions only
utilize complete matching forms. However, printf functions
utilize complete matching and subprogram matching forms (see as
shown in Fig.5). close functions, by contrast, must utilize
complete matching, direct section transfer, and branching section

transfer matching forms.

12

3. C Library Function Characteristic Code Recognition
Tables

In order to realize design concepts associated with C
library function pattern matching recognition, in 8086 C
decompilation systems, we set up a C library function
characteristic code recognition table. It is nothing else than a
gathering of library function matching patterns which the system
can recognize. Each table element associated with the table in
question represents a library function matching pattern. 1In
library function recognition, with regard to matching of table
elements, we opted for the use of sequence search forms.
Therefore, C library function characteristic code recognition
table design is taken to be a single link table structure (see as
shown in Fig.4). This is because, at the present time, there is
no way, from library function code, to find prioritized search
information. We are only able, on the basis of C language
program writing experience, to take common library function
matching patterns and store them in the front of tables. Levels
of prioritized search are reflected in the order of arrangement

sequencing of table elements.

n fn
Head < n, T e oo f 3 - :
ve—wi " pext_ptr'- - nEX(__Pr o—f— o ¢ » —
i+ fi—code.Lptro—t— - . i | [r—code__ptr et [codc__pir—i
|f—match__ptra—g Y [—match__ptre—t— {,—match__pt
N B T . H .y N .
., fi—name’ . *f,..namc” °f,_name’
3 e i o —1 i R A RS) .
el i dswkman LmEaw? S IsERBE
R Nl o Grow) | SELEEG .-G]
1L e o Rt v ENE T s . R TIPC, S RN T
S et s 1 v IR R .7 p s TG
L e T] e w1

Fig.4 C Library Function Characteristic Code Recognition Table
Structure Schematic

Key: (1) Characteristic Code Table (2) Matching Form Table

13

Library function matching patterns are primarily composed of
two sections--library function characteristic code tables and
pattern matching form tables. Here, characteristic code tables
are composed of recovered characteristic code sequences.
Moreover, pattern matching form tables are composed of pattern
matching operation coding associated with library function
recognition. It includes such information as pattern matching
form coding, code matching start addresses in characteristic code
tables, code matching length, as well as precise specification
forms associated with code matching addresses in object code
programs, and so on. For example, matching patterns associated

with printf function recognition as shown in Fig.S5.

, printf- |+ . DW.. fprinlf .
’ o DW - " pri__code
DW pri_malch
.t - . DB .. ! __printf’, 0
AATE s e , Coe
pri_codc © 055H. 08BH. OECH, 083H, 0ECH, 008H
DB 057H, 056H, OBEH, 00EH, 001H, 08DH
= DB 046H, 006H, 089H, 046H, OFCH, 056H -
\... DB OE8H,O0BDH,001H,083H, 00C4H, 002H
e 'pB : T B :
‘pri‘match ~ DB ‘- OIH i
R DW 0, 09H
ST DB 0lH S
-y “DW 0BH, 07TH :
: DB - 03H |
DW 12H, 01H, _stbuf
DB 0IH .
DW 15H, ODH
DB . . O03H o A
DW" °’'722H,0lH, _output -

DB OFFH

Fig.5 Matching Patterns Associated with printf Function
Recognition

14

IV. C LIBRARY FUNCTION PATTERN RECOGNITION REALIZATION

In 8086C decompilation systems, realization methods for C

library function pattern recognition techniques are:

1. Decompilation and Establishment of Library Function

Entry Address Tables

In processes associated with program code area
decompilation, investigations are made of subprogram transfer
commands and entry addresses are found in order to set up library
function (including user defined functions) entry address tables
utilized in programs, supplying library function recognition
uses. First of all, the setting up of library function entry
address tables is for the sake of reducing the repetitive nature
of library function recognition. The reason is that there are a
number of library functions in programs which are capable of

being utilized multiple times.
2. C Library Function Recognition

On the basis of library function entry address tables,
library function patterns associated with various entry address
start codes and C library function characteristic code
recognition tables are taken and sequence matching comparisons
are carried out. If matching is successful with patterns of a
particular library function, then, the library function name is
taken and inserted into the corresponding library function entry
address table column. Otherwise, matching continues to be
carried out with the next library function pattern in the table.
This continues right on until the recognition table is finished.
Then, recognition failures enter a "Cannot Recognize" flag into
the address table. After library function recognition operations
are completed, the work of establishing library function

recognition name tables is also finished (see as shown in Fig.6).

15

At this time, one again takes library function (including user
defined function) name character strings in the tables in
question and inserts them into the corresponding subprogram
transfer commands in compilation language programs, producing

compilation language programs carrying library function names.

TEEBADSNE | - WHNEERA
029EH © __chksk-
© 0037H " _unknown
0SE6H " _printf
11A0H —closc
I5F2H e . —stremp

Fig.6 Library Function Recognition Name Table (Refer to Fig.1)

Key: (1) Library Function Entry Address (2) Recognized Library
Function Names

pattern__match’

7
-,

. A N\
¢ b vt |
|- -stbul f |- -output --Rbuf 4

IS LAAR ! |
by
) 1
] !
l:fﬂush_ |

Fig.7 Library Function Pattern Matching Strategy Example

16

In pattern matching of library functions, with regard to
library function patterns having main and supplementary
characteristic codes, we opted for the use of depth right
prioritized matching strategies, first of all, carrying out main
characteristic matching. 1In conjunction with this, we took
supplementary characteristic pattern addresses encountered in-
matching and compressed them into a queue. After successfully
matching main characteristics, then, matching was carried out on
supplementary characteristic patterns taken out of feed queues.

This continued right along until the queue was empty and stopped.

In matching, as long as there is one instance of matching
failure, then, it is a pattern matching failure of the library
function in question. Taking printf function as an example, the
pattern matching process is as shown in Fig.7. Library function
recognition pattern matching algorithms are as shown in Fig.8.
In the algorithm in question, only complete matching form,
subprogram matching form, and direct section transfer matching
form processing methods are given. Other matching forms can be

obtained by analogy.

17

- Procedure PATTERN_MATCH(SUBR__ADDR. FUNCTION_PATTERN. F_NAME);

begin ..
get MATCH TABLE_ADDR and CODE_TABLE_.ADDR from FUNC’I‘ION_PA'XTERN:
loop . . o
begin . :
" 8et MATCH__FLAG from MATCH_ TABLE; CoLt.
case MATCH__FLAG s
. ©oe cnd_ﬂag begin
- il stack is empty -]
then begin ’
8¢t F_NAME form FUNCTION__PATTERN;
return(true);
end
. esle begin
get AUXILIARY__PATTERN from stack;
8¢t MATCH_TABLE_ADDR and CODE__TABLE_ADDR
.. from AUXILIARY_PA’ITERN.
get SUBR_ADDR from'stack;
: cnd
end 7
; comp__match; begin . o .
. ~_geloffset and length from MATCH_TABLE; - = <.
PRI ,f'z_;'-,f','match_xddr-CODLTABLE_ADDRMIB:!. L
. %= pra_addr=mSUBR_ADDR+offsct: ~ ;
ST T emp_falg = compare(prg__addr. mnlch_nddr. lcnglh)
Cpr o0 wp . ifemp..flag is false
o s * “then return(false):,
end; B

: subr__,matc!’::. begin A
i N gctoffsct and length from MATCH_TABLE; . - © -
Dt o mamh_addr-cooa_TAaLE_ADDRmmcx.
_ . o prg_addr=SUBR__ADDR+oset;
o cmp_flag =comparc(prg__addr. malch__addr. lcnth)
ifemp__flag is true
- then begin - . e
gclAUXlLlARY PATTERN from MATCH TABLB. .
zct new__subr__addr by dynamic execution; ’ i
v push new__subr__addr and AUXILIARY_PA'ITERN into stack;
~. end .
clse return(false);
3 end;
: jump_match: begin
- L get ofTsct and length from MATCH__TABLE; -
. L i match__addr-CODE_TABLE_ADDR-o-on‘wt.
T : prg_addr=SUBR__ADDR-+ofTsct; -
Cos e s emp__flag = comparc(prg__addr. match__addr, length);
! - ifcmp__flag is true
, : then begin
gct sub__PATTERN from MATCH ~—TABLE;
© get MATCH TxBLE_ADDR.ndCODR_TABL&_ADDR
from sub__PATTERN;)
. get new SUBR__ADDR by dynumc ueculion. R
(“...‘." . et oL Cﬂd v . _,_’ T " .
clscrclum(falsc). T . : .. R
end: R . e .
T e o ™ !
cndcase;
end;
..end.

Fig.8 Library Function Recognition Pattern Matching Algorithm

18

V. CONCLUDING REMARKS

In 8086 C decompilation systems, C library function
recognition programs already use 8086 compilation language and C
language for realization. We already established characteristic
code recognition tables having 64 common C library function
matching patterns. Experimental program results clearly show
that the library functions described above are all capable of

being accurately recognized.

As far as the C library function pattern recognition
techniques which we studied are concerned, it is possible to
expand them to recognize all C library functions which possess
independent subprograms. The range of C library functions which
can be recognized follows along with enlargements of
characteristic code recognition tables and expands. This type of
method very greatly reduces the amount of statement translator
device code analysis in decompilation systems. This is
beneficial for variable data type recovery. It is possible to
generalize into decompilation systems associated with other

machine types and languages.

Problems which have been discovered now are: how to
recognize macro definition functions such as getc and putc, etc.
Macro definition functions have corresponding subprograms.
However, main body command sequences show up in program code
areas causing difficulties in their recognition during
decompilation. Our tentative idea is that, after recognizing the
subprograms contained in macro definition functions, we opt for
the use of methods associated with the recalling of command
sequences in recognized program code areas in order to carry out

the recognition of macro definition functions.

19

REFERENCES

NSKE. £RT. FEIRTHARECS0 CRAFRBERNONE, HRAHLLM. 1988, Volll, No.o,

pp633—637.
k. ST, AR RITREH A, 1986,
Microsoft C 5.0 Reference Book, Microsoft Corporation, 1987,

20

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATTON MICROFICHE

BO8S DIA/RTS-2FT
C509 BALIOCS509 BAILISTIC RES IAB
C510 R&T IABS/AVEADCOM

C513 ARRADOOM

C535 AVRADCOM/TSARCOM

C539 TRASANA

Q592 FSTC

Q619 MSIC REDSTONE

Q008 NTIC

Q043 AFMIC-IS

EO051 HQ USAF/INET

E404 AEDC/DOF

E408 AFWL

E410 AFDIC/IN

E429 SD/IND

P005 DOE/ISA/DDI

PO50 CIA/OCR/ADD/SD

1051 AFTT/IDE

PO90 NSA/CDB

2206 FSL

HFRPRPORRPHRPRRPRBPERARP R R PR

Microfiche Nbr: FTD95C000334
NAIC-ID(RS)T-0023-95

-

